RNA interference identifies a calcium-dependent protein kinase involved in Medicago truncatula root development.
نویسندگان
چکیده
Changes in cellular or subcellular Ca2+ concentrations play essential roles in plant development and in the responses of plants to their environment. However, the mechanisms through which Ca2+ acts, the downstream signaling components, as well as the relationships among the various Ca2+-dependent processes remain largely unknown. Using an RNA interference-based screen for gene function in Medicago truncatula, we identified a gene that is involved in root development. Silencing Ca2+-dependent protein kinase1 (CDPK1), which is predicted to encode a Ca2+-dependent protein kinase, resulted in significantly reduced root hair and root cell lengths. Inactivation of CDPK1 is also associated with significant diminution of both rhizobial and mycorrhizal symbiotic colonization. Additionally, microarray analysis revealed that silencing CDPK1 alters cell wall and defense-related gene expression. We propose that M. truncatula CDPK1 is a key component of one or more signaling pathways that directly or indirectly modulates cell expansion or cell wall synthesis, possibly altering defense gene expression and symbiotic interactions.
منابع مشابه
IN BRIEF Medicago truncatula CRE1 Cytokinin Receptor Regulates Nodulation and Lateral Root Development
The plant hormone cytokinin is implicated in the control of root architecture and development, including legume root nodulation. Gonzalez-Rizzo et al. (pages 2680–2693) identified a Medicago truncatula homolog of Arabidopsis, CYTOKININ RESPONSE1 (CRE1), which encodes a cytokinin receptor histidine kinase, and made use of RNA interference of Mt CRE1 to investigate the role of cytokinin in the no...
متن کاملMedicago truncatula CRE1 cytokinin receptor regulates nodulation and lateral root development.
The plant hormone cytokinin is implicated in the control of root architecture and development, including legume root nodulation. Gonzalez-Rizzo et al. (pages 2680–2693) identified a Medicago truncatula homolog of Arabidopsis, CYTOKININ RESPONSE1 (CRE1), which encodes a cytokinin receptor histidine kinase, and made use of RNA interference of Mt CRE1 to investigate the role of cytokinin in the no...
متن کامل3-hydroxy-3-methylglutaryl coenzyme a reductase 1 interacts with NORK and is crucial for nodulation in Medicago truncatula.
NORK in legumes encodes a receptor-like kinase that is required for Nod factor signaling and root nodule development. Using Medicago truncatula NORK as bait in a yeast two-hybrid assay, we identified 3-hydroxy-3-methylglutaryl CoA reductase 1 (Mt HMGR1) as a NORK interacting partner. HMGR1 belongs to a multigene family in M. truncatula, and different HMGR isoforms are key enzymes in the mevalon...
متن کاملThe Medicago truncatula E3 Ubiquitin Ligase PUB1 Interacts with the LYK3 Symbiotic Receptor and Negatively Regulates Infection and Nodulation W OA
LYK3 is a lysin motif receptor-like kinase of Medicago truncatula, which is essential for the establishment of the nitrogenfixing, root nodule symbiosis with Sinorhizobium meliloti. LYK3 is a putative receptor of S. meliloti Nod factor signals, but little is known of how it is regulated and how it transduces these symbiotic signals. In a screen for LYK3-interacting proteins, we identified M. tr...
متن کاملRNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula.
RNA interference (RNAi) is a powerful reverse genetic tool to study gene function. The data presented here show that Agrobacterium rhizogenes-mediated RNAi is a fast and effective tool to study genes involved in root biology. The Arabidopsis gene KOJAK, involved in root hair development, was efficiently knocked down. A. rhizogenes-mediated root transformation is a fast method to generate advent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 17 11 شماره
صفحات -
تاریخ انتشار 2005